101 Essays That Will Change the Way You Think

101 Essays That Will Change the Way You Think

Matematika tolong bantuin yaa ini materi limit :D​

tolong bantuin yaa ini materi limit :D​

Nilai dari [tex]\displaystyle{ \lim_{x \to -2} \frac{\sqrt{2x+13}-\sqrt{x+11}}{x+2} }[/tex] adalah [tex]\displaystyle{\boldsymbol{\frac{1}{6}} }[/tex].

PEMBAHASAN

Teorema pada limit adalah sebagai berikut :

[tex](i)~\lim\limits_{x \to c} f(x)=f(c)[/tex]

[tex](ii)~\lim\limits_{x \to c} kf(x)=k\lim\limits_{x \to c} f(x)[/tex]

[tex](iii)~\lim\limits_{x \to c} [f(x)\pm g(x)]=\lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)[/tex]

[tex](iv)~\lim\limits_{x \to c} [f(x)\times g(x)]=\lim\limits_{x \to c} f(x)\times\lim\limits_{x \to c} g(x)[/tex]

[tex](v)~\lim\limits_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim\limits_{x \to c} f(x)}{\lim\limits_{x \to c} g(x)}[/tex]

[tex](vi)~\lim\limits_{x \to c} \left [ f(x) \right ]^n=\left [ \lim\limits_{x \to c} f(x) \right ]^n[/tex]

.

DIKETAHUI

[tex]\displaystyle{ \lim_{x \to -2} \frac{\sqrt{2x+13}-\sqrt{x+11}}{x+2}= }[/tex]

.

DITANYA

Tentukan nilai limitnya.

.

PENYELESAIAN

Kita kalikan dengan akar sekawannya.

[tex]\displaystyle{ \lim_{x \to -2} \frac{\sqrt{2x+13}-\sqrt{x+11}}{x+2} }[/tex]

[tex]\displaystyle{= \lim_{x \to -2} \frac{\sqrt{2x+13}-\sqrt{x+11}}{x+2}\times\frac{\sqrt{2x+13}+\sqrt{x+11}}{\sqrt{2x+13}+\sqrt{x+11}} }[/tex]

[tex]\displaystyle{= \lim_{x \to -2} \frac{2x+13-x-11}{(x+2)(\sqrt{2x+13}+\sqrt{x+11})} }[/tex]

[tex]\displaystyle{= \lim_{x \to -2} \frac{\cancel{(x+2)}}{\cancel{(x+2)}(\sqrt{2x+13}+\sqrt{x+11})} }[/tex]

[tex]\displaystyle{= \lim_{x \to -2} \frac{1}{\sqrt{2x+13}+\sqrt{x+11}} }[/tex]

[tex]\displaystyle{=\frac{1}{\sqrt{2(-2)+13}+\sqrt{(-2)+11}} }[/tex]

[tex]\displaystyle{=\frac{1}{\sqrt{9}+\sqrt{9}} }[/tex]

[tex]\displaystyle{=\frac{1}{6} }[/tex]

.

KESIMPULAN

Nilai dari [tex]\displaystyle{ \lim_{x \to -2} \frac{\sqrt{2x+13}-\sqrt{x+11}}{x+2} }[/tex] adalah [tex]\displaystyle{\boldsymbol{\frac{1}{6}} }[/tex].

.

PELAJARI LEBIH LANJUT

  1. Limit fungsi : https://brainly.co.id/tugas/30319110
  2. Limit tak hingga : https://brainly.co.id/tugas/28942347
  3. Limit fungsi trigonometri : https://brainly.co.id/tugas/30308496

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Limit Fungsi

Kode Kategorisasi: 11.2.8

Kata Kunci : limit, fungsi, akar, sekawan.